

# **Data Sheet**

**Product Name:** D-erythro-Sphingosine

Cat. No.: CS-0020759 CAS No.: 123-78-4 Molecular Formula:  $C_{18}H_{37}NO_2$  Molecular Weight: 299.49

Target: Endogenous Metabolite; Phosphatase; PKC

**Pathway:** Epigenetics; Metabolic Enzyme/Protease; TGF-beta/Smad **Solubility:** DMSO : 50 mg/mL (ultrasonic;warming;heat to 60°C)

HO NH<sub>2</sub>

### **BIOLOGICAL ACTIVITY:**

D-erythro-Sphingosine (Erythrosphingosine) is a very potent activator of **p32-kinase** with an **EC<sub>50</sub>** of 8 μM, and inhibits **protein kinase C (PKC)**. D-erythro-Sphingosine (Erythrosphingosine) is also a **PP2A** activator<sup>[1][2][3][4]</sup>. IC50 & Target: EC50: 8 μM (p32-kinase)<sup>[1]</sup>

PKC<sup>[2][3]</sup> In Vitro: A p32-sphingosine-activated protein kinase responds to low concentrations of D-erythro-Sphingosine with an initial activation observed at 2.5  $\mu$ M and a peak activity at 10-20  $\mu$ M. This kinase shows a modest specificity for D-erythro-Sphingosine over other sphingosine tereoisomers, and a preference for sphingosines over ihydrosphingosines<sup>[1]</sup>. D-erythro-Sphingosine inhibits protein kinase C in vitro<sup>[2]</sup>. D-erythro-Sphingosine has been shown to inhibit protein kinase C, which affects cell regulation and several signal transduction pathways, and exhibits antitumor promoter activities in various mammalian cells<sup>[3]</sup>.

#### References:

- [1]. Pushkareva MYu, et al. Regulation of sphingosine-activated protein kinases: selectivity of activation by sphingoid basesand inhibition by non-esterified fatty acids. Biochem J. 1993 Sep 15;294 (Pt 3):699-703.
- [2]. Khan WA, et al. Protein kinase C and platelet inhibition by D-erythro-Sphingosine: comparison with N,N-dimethylsphingosine and commercial preparation. Biochem Biophys Res Commun. 1990 Oct 30;172(2):683-91.
- [3]. Pham VT, et al. A concise synthesis of a promising protein kinase C inhibitor: D-erythro-Sphingosine. Arch Pharm Res. 2007 Jan;30(1):22-7.
- [4]. Cheng P, et al. Protein phosphatase 2A (PP2A) activation promotes axonal growth and recovery in the CNS. J Neurol Sci. 2015 Dec 15;359(1-2):48-56.

## **CAIndexNames:**

4-Octadecene-1,3-diol, 2-amino-, (2S,3R,4E)-

# SMILES:

CCCCCCCCCCC/C=C/[C@@H](O)[C@@H](N)CO

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 610-426-3128 Fax: 888-484-5008 E-mail: sales@ChemScene.com

Address: 1 Deer Park Dr., Suite F., Monmouth Junction, NJ 08852, USA

Page 1 of 1 www.ChemScene.com