

Data Sheet

Product Name:	BMS-986122	
Cat. No.:	CS-0078524	
CAS No.:	313669-88-4	S Br
Molecular Formula:	C ₁₆ H ₁₅ BrCINO ₃ S ₂	
Molecular Weight:	448.78	\N,;O
Target:	Opioid Receptor	0,5
Pathway:	GPCR/G Protein; Neuronal Signaling	0
Solubility:	DMSO : 100 mg/mL (222.83 mM; Need ultrasonic)	

BIOLOGICAL ACTIVITY:

BMS-986122 is a selective, potent positive allosteric modulator of the **mu-opioid receptor** (μ-OR). BMS-986122 shows potentiation of orthosteric agonist-mediated β-arrestin recruitment, adenylyl cyclase inhibition, and G protein activation. BMS-986122 potentiates DAMGO-mediated [35 S]GTPγS binding in mouse brain membranes[1][2]. In Vitro: BMS-986122 increases β-arrestin recruitment stimulated by endomorphin 1 (EC₅₀=3 µM) in U2OS-OPRM1 human osteosarcoma cells expressing µ-opioid receptors. BMS-986122 potentiates endomorphin 1-induced inhibition of forskolin-stimulated adenylyl cyclase activity in CHO cells expressing human recombinant µ-opioid receptors (EC₅₀=8.9 µM). BMS-986122 potentiates DAMGO-mediated [35 S]GTPγS binding in mouse brain membranes and appears to be, at least in part, a positive affinity modulator of the µ-opioid receptor for DAMGO binding[11]. BMS-986122 enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in CHO cells expressing human mu-opioid receptors. BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception^[2].

BMS-986122 is selective for μ -OR and has no detectable activity at the closely related δ -OR. BMS-986122 is a silent allosteric modulator at δ -OR and κ -OR^[3].

References:

[1]. Burford NT, et al. Discovery of positive allosteric modulators and silent allosteric modulators of the µ-opioid receptor. Proc Natl Acad Sci U S A. 2013;110(26):10830-10835.

[2]. Kandasamy R, et al. Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A. 2021;118(16):e2000017118.

[3]. Livingston KE, Alt A, Canals M, Traynor JR. Pharmacologic Evidence for a Putative Conserved Allosteric Site on Opioid Receptors. Mol Pharmacol. 2018;93(2):157-167.

CAIndexNames:

Thiazolidine, 2-(3-bromo-4-methoxyphenyl)-3-[(4-chlorophenyl)sulfonyl]-

SMILES:

O=S(N1C(C2=CC=C(OC)C(Br)=C2)SCC1)(C3=CC=C(CI)C=C3)=O

CI (

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 610-426-3128	Fax: 888-484-5008	E-mail: sales@ChemScene.com
Address: 1	Deer Park Dr, Suite Q, Monmouth	Junction, NJ 08852, USA