

Building Blocks, Pharmaceutical Intermediates, Chemical Reagents, Catalysts & Ligands www.ChemScene.com

Data Sheet

Product Name:	Mozavaptan (hydrochloride)	
Cat. No.:	CS-0083763	
CAS No.:	138470-70-9	
Molecular Formula:	C ₂₇ H ₃₀ CIN ₃ O ₂	
Molecular Weight:	464.00	
Target:	Vasopressin Receptor	
Pathway:	GPCR/G Protein	
Solubility:	DMSO : 20.83 mg/mL (44.89 mM; Need ultrasonic); H2O : 10 mg/mL (21.55 mM; Need ultrasonic)	

BIOLOGICAL ACTIVITY:

Mozavaptan hydrochloride (OPC-31260 hydrochloride) is a benzazepine derivative and a potent, selective, competitive and orally active **vasopressin V₂ receptor** antagonist with an **IC**₅₀ of 14 nM. Mozavaptan hydrochloride shows ~85-fold selectivity for **V₂ receptor** over V₁ receptor (IC₅₀ of 1.2 µM), and can antagonize the antidiuretic action of arginine vasopressin (AVP) in vivo. Mozavaptan hydrochloride has the potential for hyponatremia, syndrome of inappropriate antidiuretic hormone (SIADH), and congestive heart failure treatment^{[1][2]}. IC50 & Target: IC50: 14 nM (Vasopressin V₂ receptor); 1.2 µM (Vasopressin V₁ receptor)^[1] *In Vitro:* Mozavaptan (OPC-31260) inhibits AVP binding to binding to rat liver (V1 receptor) and kidney (V2 receptor) plasma membranes in a competitive manner and that it is about 100 times more selective for V2 receptors. K_d value for [3H]-AVP in rat liver is 1.1 nM; in rat kidney is 1.38 nM. The K_d of [3H]-AVP is reduced significantly in both rat liver and kidney in the presence of Mozavaptan (K_d of 2.47 nM and 5.51 nM for V1 receptor at the doses of 0.3 µM and 1 µM.respectively; K_d of 2.4 nM and 4.03 nM for V2 receptor at the doses of 0.3 µM and 1 µM.respectively; or al administration; hydrated conscious rats) treatment dose-dependently increases urine flow and decreased urine osmolality^[1].

Mozavaptan (OPC-31260; 10-100 μ g/kg; intravenous injection; male Sprague-Dawley rats) treatment inhibits the antidiuretic action of exogenously administered arginine vasopressin (AVP) in water-loaded, alcohol-anaesthetized rats in a dose-dependent manner^[1].

References:

[1]. Yamamura Y, et al. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasopressin V2 receptor antagonist. Br J Pharmacol. 1992 Apr;105(4):787-91.

[2]. Yamaguchi K, et al. Clinical implication of the antidiuretic hormone (ADH) receptor antagonist mozavaptan hydrochloride in patients with ectopic ADH syndrome. Jpn J Clin Oncol. 2011 Jan;41(1):148-52.

CAIndexNames:

Benzamide, N-[4-[[5-(dimethylamino)-2,3,4,5-tetrahydro-1H-1-benzazepin-1-yl] carbonyl] phenyl]-2-methyl-, hydrochloride (1:1) hydrochloride (1:1

SMILES:

CC1=CC=CC=C1C(NC2=CC=C(C(N3C(C=CC=C4)=C4C(N(C)C)CCC3)=O)C=C2)=O.Cl

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 610-426-3128	Fax: 888-484-5008	E-mail: sales@ChemScene.com
Address: 1	Deer Park Dr, Suite Q, Monmouth	Junction, NJ 08852, USA