

Data Sheet

Product Name:	K145 (hydrochloride)	
Cat. No.:	CS-1918	
CAS No.:	1449240-68-9	
Molecular Formula:	C ₁₈ H ₂₅ CIN ₂ O ₃ S	
Molecular Weight:	384.92	/
Target:	Apoptosis; SphK	
Pathway:	Apoptosis; Immunology/Inflammation	
Solubility:	H2O : 126.7 mg/mL (329.16 mM; Need ultrasonic and warming); DMSO : 50 mg/mL (129.90 mM; Need ultrasonic)	

BIOLOGICAL ACTIVITY:

K145 hydrochloride is a selective, substrate-competitive and orally active SphK2 inhibitor with an IC₅₀ of 4.3 µM and a K_i of 6.4 µM. K145 hydrochloride is inactive against SphK1 and other protein kinases. K145 hydrochloride induces cell apoptosis and has potently antitumor activity^[1]. IC50 & Target: IC50: 4.3 µM (SphK2)^[1]

Ki: 6.4 µM (SphK2)^[1] In Vitro: K145 (0-10 µM; 24-72 hours; U937 cells) treatment significantly inhibits the growth of U937 cells in a concentration-dependent manner^[1].

K145 (10 µM; 24 hours; U937 cells) treatment significantly induces apoptosis in U937 cells^[1].

K145 (4-8 µM; 3 hours; U937 cells) treatment decreases the phosphorylation of ERK and Akt^[1].

Treatment with K145 (10 µM) causes a decrease of total cellular S1P without significant effects on ceramide levels^[1]. In Vivo: K145 (50 mg/kg; oral gavage; daily; for 15 days; BALB/c-nu mice) treatment significantly inhibits the growth of U937 tumors in nude mice^[1].

References:

[1]. Liu K, et al. Biological characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a selective sphingosine kinase-2 inhibitor and anticancer agent. PLoS One. 2013;8(2):e56471.

CAIndexNames:

2,4-Thiazolidinedione, 3-(2-aminoethyl)-5-[3-(4-butoxyphenyl)propylidene]-, hydrochloride (1:1)

SMILES:

O=C(N(CCN)C/1=O)SC1=C/CCC2=CC=C(OCCCC)C=C2.[H]CI

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 610-426-3128

Fax: 888-484-5008

E-mail: sales@ChemScene.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA